寻觅书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

如果说“感知机”是单个的神经元,那么“多层感知机”就是将分散的神经元,连接成了网络。

在输入层和输出层之间,再加入若干层,每层若干个神经元。

然后每一层的每个神经元,与下一层的每个神经元,都通过权重参数建立起连接……

层与层之间,完全连接。

也就是说,第i层的任意一个神经元,一定与第i+1层的任意一个神经元相连。

这就是多层感知机,简称MLP。

但仅仅简单组合在一起,还不算真正的“人工神经网络”,必须对“感知机”的基本结构,做出一定的改进。

首先,必须加入隐藏层,以增强模型的表达能力。

隐藏层可以有多层,层数越多,表达能力越强,但与此同时,也会增加模型的复杂度,导致计算量急遽增长。

其次,输出层的神经元允许拥有多个输出。

这样模型就可以灵活地应用于各种分类回归,以及其他的机器学习领域,比如降维、聚类等。

此外,还要对激活函数做出扩展……

前一篇“感知机”论文中,主要使用的是阶跃函数sign,虽然简单易用,但是处理能力有限。

因此神经网络的激活函数,一般使用其他的非线性函数。

备选的函数有很多:sigmoid函数,tanh函数,ReLU函数……

江寒逐一进行了分析。

通过使用多种性能各异的激活函数,可以进一步增强神经网络的表达能力。

对于二分类问题,只需要一个输出神经元就够了。

使用sigmoid作为激活函数,来输出一个0到1之间的数值,用来表示结果为1的概率。

对于多类分类问题,一般在输出层中,安排多个神经元,每个分类一个。

然后用softmax函数来预测每个分类的概率……

描述完结构之后,就可以讨论一下“多层感知机”的训练了。

首先是MLP的训练中,经典的前向传播算法。

顾名思义,前向传播就是从输入层开始,逐层计算加权和,直到算出输出值。

每调整一次参数值,就需要重头到尾重新计算一次。

这样运算量是非常大的,如果没有强大的硬件基础,根本无法支撑这种强度的训练。

好在现在已经是2012年,计算机性能已经足够强悍。

前向传播无疑是符合直觉的,缺陷就是运算量很大,训练起来效率比较差。

与“感知机”的训练相比,MLP的训练需要引入损失函数和梯度的概念。

神经网络的训练,本质上是损失函数最小化的过程。

损失函数有许多种选择,经典的方法有均方误差、交叉熵误差等,各有特性和利弊。

整个训练过程是很清晰的。

先随机初始化各层的权重和偏置,再以损失函数为指针,通过数值微分求偏导的办法,来计算各个参数的梯度。

然后沿着梯度方向,以预设的学习率,逐步调整权重和偏置,就能求得最优化的模型……

写完这些就足够了,再多的内容,可以安排在下一篇文章里。

不过,江寒想了想,觉得这篇论文的内容,还是有点过于充实。

仔细琢磨了一下,干脆将其一分为二。

多层感知机的结构和前向传播的概述部分,单独成篇。

神经网络训练中,关于激活函数和损失函数讨论的部分,再来一篇。

然后分开投稿,这样不就可以多拿1个学术点了?

反正学术点又不看字数……

当然,这两篇论文都必须以前一篇的感知机为基础,分别进行阐述,而不能互为前提、互相引用。

这样就需要多动点脑筋了。

江寒又花了一个多小时,才将它们全都补充完整,并丰满起来。

接下来校队、润色一番后,翻译成英文,转换PDF……

投稿的时候,江寒仔细琢磨了一下,在三区里选了两家方向对口的期刊,投了出去。

没有选择影响因子更大的二区或一区期刊。

因为二区以上的期刊,虽然影响因子更高,发表后收获的学术点也多。

但发表难度太大,万一被打回来,再重新投递……

时间耽搁不起。

要知道,江寒只有三个月的时间。

一系列操作下来,差不多就到了10点半。

江寒脱掉外衣,去洗了个澡,然后换上睡衣。

忙了一下午带一晚上,直到这时才闲了下来。

然后他就想起了夏雨菲,也不知道她下午过得好不好,开不开心?

一股深切的思念,从心底涌出。

拿过手机,指纹解锁。

这才发现,有好多条未读微信。

写论文的时候太投入,根本听不到提示音。

点进夏雨菲的聊天界面,就看到了一排文字消息。

“在哪呢?”

“终于写完作业了,好累啊。”

“你在忙什么?”

“看来真的很忙,都没时间看微信了。”

“先睡了,明天还要上学……”

……

除了第一条是放学时间发来的,后面几条都来自10点之后,差不多5分钟一条。

“这傻姑娘,我没回复微信,也不说拨个电话或者语音通话……”

江寒叹了口气,发了个表情图过去。

夏雨菲很快就回复:“忙完了吗?”

江寒微微一笑。

这个时间她还没睡,莫非在一直等着我回复?

前一阵天天哄她上床,不会已经养成了习惯吧?

一天不哄,就睡不着……

“嗯,正准备休息,刚上床。”江寒回复。

夏雨菲:“那你赶紧休息吧,别太劳累了。”

江寒笑了笑,拨了个语音通话。

“喂?”夏雨菲秒接。

江寒声音温和:“想我了没?”

“没有。”

江寒微微一笑。

否认得这么干脆?

那就是想了。

女孩子的话,有时候就得反着听……

“想我你就打个电话,要不拨个语音通话,微信我有时不能及时看到。”江寒温和地嘱咐。

夏雨菲沉默了一小会儿,低声说:“我担心你在忙,别再耽误了你的正事……”

江寒笑了笑:“你要是一直都这么懂事,我可就有点舍不得欺负你了啊。”

夏雨菲脸一红。

他所说的“欺负”,不知道到底是哪种“欺负”?

那自己以后,到底是应该始终这么“懂事”,还是偶尔也“不懂事”一次呢?

“你在哪了?”夏雨菲不敢深想,就没话找话。

“酒店里。”江寒实话实说。

“嗯?”夏雨菲有点意外,“怎么没回寝室?”

“寝室里有点闹,我想专心研究点东西。”江寒回答。

“哪家酒店?”夏雨菲问。

“星河。”

“条件怎么样?”夏雨菲又问。

“还行。”江寒回答。

“你刚才说什么?”夏雨菲好像没听清楚。

“我说还行。”江寒稍微提高音量。

“什么?”夏雨菲仍然没有听清。

“信号怎么忽然变差了……”

那边嘀咕了一声,然后通话就突然中断了。

江寒正打算重拨,一个视频通话的邀请,忽然跳了出来。

视频……

不会是学人家查岗吧?

寻觅书屋推荐阅读:我们的灵魂被交换了医毒大佬穿成年代作精重生缅北:再次踏上逃亡之旅极品修真强少超级奶爸,我被巨星天后绑架了和高冷女教师领证,全校都惊了魂穿60之大茂的得意人生我的网恋对象是明星无尽列车之终极王座奶爸:人在大学,被校花女神堵门千金被无情赶出豪门,转身下乡了美女的透视保镖高手下山:退婚九个未婚妻虎警我的网恋女友不可能是校花重返1980:开局拒婚村长女儿带着媳妇混吃等死重生在国民女神的演唱会娱乐顶流:从成为杨老板男友开始贴心萌宝荒唐爹女神的贴身男秘重生之驭夫记末日,无敌的我又来了替身王妃:猎个王爷当老公全新的手冢国光从得到鸿蒙珠开始修真血痕事务所重生后,大小姐独宠小奶狗弃妃,你又被翻牌了!风流神算村医大国之路训练家从契约傲娇猫开始穿越:系统降临从造车到宇宙黑企系统觉醒:重生之途逍遥军医刑警仕途:从特大绑架案开始娱乐:说唱时代靠本草打开娱乐:那都能拍?这个导演不简单娱乐:收手吧!杨蜜都坏掉了开局网恋奔现,女友竟是姐姐闺蜜一胎三宝:鬼王爹地,太凶猛魔眼小神医四合院:忙着去赶山,挖宝馋死禽山河丹青卷山村极品傻医百年校庆:我被校花当众表白九阳剑圣山水情文娱:重生后,我和富婆青梅双向奔赴天眼仙医吴北
寻觅书屋搜藏榜:上班第一年,我被女总裁倒追从小村长到首富宠妻无度:腹黑摄政王重生太粘人秀才相公港综:重生港岛,我是船王接班人直播种田:我在古代给祖国寄古董娇妻出逃,骗婚总裁太难缠捡个王爷过日子女神的贴身男秘娱乐:全网求我出道绝世吸血女王离婚日记逆天败家系统我怎么穿越到了思密达妻子的秘密(微风)全民转职:我靠被动技能成法神妖妻在上:冥少心尖宠节目组失联,荒岛直播逆转人设让你唱跳,你披上紫袍雷法万岁?群穿明末之荒海平波纪未婚夫死后我嫁给了他的分身权御山河农门娇娘有空间年少有为蜜谋已久财富万亿,师姐帮我追老婆开局操作蝙蝠侠银川大陆之峰雪天下我那上了年纪的女明星女友夫人她又出来赚钱搞事业了年代文炮灰女配养崽崽美味良缘斗罗之我才是真正的气运之子上课了单身狗拐个战神当夫君都市至尊宝四合院之何雨柱轮回从51年开始嫡嫁徒儿,下山祸害你师娘去吧我真不想做主角啊学霸逆袭,超级甜!女神的贴身男秘华娱之闪耀巨星惊!暴君的团宠崽崽是天道亲闺女半夏田园霸道俏小妞猪头吃定你我的明星师妹一世契约四合院:我有人工智能绝品村医
寻觅书屋最新小说:仕途巅峰:从女书记的秘书开始重生离婚之日:我的计划震撼全球都断绝关系了还求我回家做什么重生之美女太多了,怎么办卡牌:我不是弃神都市太子爷成了天命大反派开局背靠蓝星?一拳一戟镇万族重生:从教父到美利坚话事人囚笼里的休者诡异降临:这个人类超级有钱!为妻子复仇的丈夫炒股炒成大股东?被套就举牌?那一刻,蝴蝶飞飞辅助?抱歉,我有禁字诀!男生女相,你们都给我装了定位?上四休三!员工比我还怕公司破产我梦见了高考答案神秘法术之缘穿行诸天,证就至高蜜色诱人两界穿梭之崛起维零小说诗词两手抓,漂亮女友带回家他们都叫我大佬都市神豪之纵横花都斩神:今天也在打工魔尊是我哥辣手狂花时空祭司开局神豪系统,我的资产遍布全球回档2006,我真不懂炒股啊高武:投资命格,万倍返还闹呢?让你契约亡灵,你契约将臣万界游戏:英雄联盟系统梦境入侵:我的梦境形象是少女!从F到SSS,我的器灵进阶快亿点点怎么了重返82,开局迎娶厂花初恋妙手神医:从融合AI开始超能大老板高武:以霸王之名,横压一切!我有九千亿亩黑土地我在修仙管理局的日子直播:修仙归来破界新生资源万倍返还,众女成尊我成神湛剑风云我只是想回家,怎么就成神了?灵气复苏:我开启S1修仙赛季洛阳镖局记重生高武世界,其实我是魔修