寻觅书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

江寒心中忐忑起来。

难道苏婉莹对我的小心思,根本没有瞒着她?

或者说,没有瞒得过她?

甚至鬼丫头暗地里把下午的事情,透露给了夏雨菲?

以苏婉莹的诡计多端,这也不是完全不可能的!

那么,咱要不要坦白从宽呢?

可万一夏雨菲只是敏感过度,其实什么都不知道……

那岂不是此地无银、作茧自缚?

啊啊啊,有点头疼……

屏幕里。

夏雨菲忽然有点坐不住:“不行,明天我要去你那里一趟。”

江寒无语片刻,说:“想来你就悄悄地来,都说给我知道了,你还能查到些什么?”

“才不管,就要去。”夏雨菲小嘴一扁,卖了个萌。

江寒眨了眨眼。

女朋友主动送上门?

好像让人有点期待啊,这要是不好好“欺负”一番,就白长这么大了……

这么一想,居然还有点小“激动”?

好吧,先别想太多了,不然……

江寒温和一笑:“嗯,那就说好了,一定要来,不来的是小狗。”

夏雨菲:“……”

接下来,两人又聊了一会儿。

11点,夏雨菲准时上床睡觉。

挂断视频后,江寒的心情已经安定了下来。

不管发生什么事,都要守护好夏雨菲,对自己来说,她就是最后的港湾。

让她开心,让她快乐,最好能与痛苦永远绝缘……

接下来,江寒就振作精神,继续看书、做题。

直到12点多,才累得一头栽倒在床上。

然后,眼睛一闭,人事不知……

一夜无梦。

第二天,江寒起床后,继续进行机器学习方面的研究。

在另一个世界,“机器学习”这门学科,在几十年的发展历程中,逐渐形成了各种流派。

其中江湖地位最高的,有“五大门派”。

分别是符号主义、贝叶斯派、进化主义、行为类比主义,以及后起之秀:联结主义。

其中,联结主义的代表理论,正是“人工神经网络”、“深度学习”。

而在这个世界中,除了“联结主义”,另外四个“山头”已全部被人占领……

想要在机器学习领域深耕,掌握现有的技术,也是十分必须的。

至少可以触类旁通,也可以在写作论文时,合理引用,避免重复造轮子……

所以,江寒打算将其他分支的技术,全部系统地学习一遍,为以后开展“神经网络”的后续研究,夯实基础。

今天,江寒打算研究的,是贝叶斯派的“镇派武学”:“概率图”算法。

概率图模型是机器学习的一个独特分支,是图与概率论的完美结合。

在这种模型中,每个节点表示随机变量,边则表示概率。

在长期发展中,概率图算法也诞生过许多辉煌的成果。

例如“马尔可夫模型”,在语音识别方面,就长期处于主导地位,同时也广泛用于各种序列数据分析问题……

江寒先上网查找了一番,将所有关于“概率图算法”的论文收集起来。

一个半小时过去,总共搜集到了三十多篇相关论文。

江寒先粗粗地检阅了一遍。

其中不少东西,有点似曾相识,应该是以前听说过,或者重生前接触过。

但印象并不特别深,因为当年的自己,只对“深度学习”特别感兴趣。

其他方向基本上都是一带而过,并没有深入研究。

江寒开始一篇一篇地刷论文。

但很快他就发觉,“概率图”并不像预计中那么容易掌握。

难怪不少人一提到概率图模型,就谈虎色变,的确有点晦涩,不好理解。

按理说,以自己目前的脑力,研究现成的理论,并不该这么费劲。

可现在却有点举步维艰的意思。

究其原因……

江寒稍微一想,就明白了症结所在。

这个玩意对他来说,就是个全新的方向。

重生之前,对其完全没有了解,只是听说过有这么个东西。

对概念的掌握,以及各种细节的理解,连皮毛都算不上。

如果仅仅只是这样,那也就算了,只要稍微花点时间,迟早还是可以全盘悟透的。

但偏偏,他的数学基础虽然不错,深度却略显不够。

相关理论基础,以及知识的积累,也不算特别充足。

俗话说:巧妇难为无米之炊,所以……

好比做一道极度复杂的证明题。

有时候,明知结论是正确的,过程也很不容易推理。

而且更糟的是,许多必须用到的知识点,比如概念、定理、推论什么的,以前从来没有接触过。

这就相当于从采矿、种橡胶树开始学开车,不南辕北辙、难到极点才是怪事!

所以说,就算脑力提升了,也不是无所不能的。

再优秀的头脑,也需要一定的知识底蕴,才能发挥出应有的威能……

当然,要想解决这个矛盾,倒也不是特别困难。

一句话,学就完了。

俗话说:磨刀不误砍柴工……

接下来,江寒打算先好好充充电,学习一下相关的知识。

先打好基础,尤其是数学,回过头来再刷论文,才能事半功倍。

江寒先回了一趟学校,去寝室里翻找了一顿。

将从前买来的各种教材、参考书全都带走。

再次回到星河酒店后,就闭门不出,认真研读。

不得不说,他现在的学习效率十分惊人。

和以前比起来,不知提高了多少倍!

例如这本《概率论与数理统计》。

这是江寒从几十种同类教材中,精挑细选出来的,属于数学本科的专业教材。

比他以前学过的工科教材,涉及面更广,理论更深入,学习难度也更大。

一般的数学本科生,大约要用两到三个月刻苦攻读,才有可能学完。

至于能掌握多少,还要另说。

期末会不会挂科,还要看个人能力,再加上一点点运气……

而江寒呢?

只用了一个上午,就完全通读了一遍,并做完了书后全部习题。

以前很难理解的概念,一看就懂;许多复杂的推理过程,一想就通。

合上书以后,书里的知识点,也几乎全都历历在目,一点都没有遗忘的迹象。

而且还能举一反三、融会贯通。

课后习题基本没有他半分钟内解决不了的!

这样的学习效率,实在太吓人了。

看看时间已经中午,江寒就去2楼的餐厅饱餐了一顿。

饭后,江寒走出酒店,进入了附近的一个小区。

小区中央有个小广场,不少人在休闲、运动。

江寒在这里溜达了几圈,放松一会儿,也顺便消消食。

在这个过程中,他也没有停止思考。

一上午的《概率学与数理统计》没白看,关于“概率图”方面的问题,思考起来果然比原先顺畅了不少。

但可惜还是有点不够清晰、透彻。

江寒也不急躁。

毕竟现在这种情况,才是学习、科研的常态……

寻觅书屋推荐阅读:我们的灵魂被交换了医毒大佬穿成年代作精重生缅北:再次踏上逃亡之旅极品修真强少超级奶爸,我被巨星天后绑架了和高冷女教师领证,全校都惊了魂穿60之大茂的得意人生我的网恋对象是明星无尽列车之终极王座奶爸:人在大学,被校花女神堵门千金被无情赶出豪门,转身下乡了美女的透视保镖高手下山:退婚九个未婚妻虎警我的网恋女友不可能是校花重返1980:开局拒婚村长女儿带着媳妇混吃等死重生在国民女神的演唱会娱乐顶流:从成为杨老板男友开始贴心萌宝荒唐爹女神的贴身男秘重生之驭夫记末日,无敌的我又来了替身王妃:猎个王爷当老公全新的手冢国光从得到鸿蒙珠开始修真血痕事务所重生后,大小姐独宠小奶狗弃妃,你又被翻牌了!风流神算村医大国之路训练家从契约傲娇猫开始穿越:系统降临从造车到宇宙黑企系统觉醒:重生之途逍遥军医刑警仕途:从特大绑架案开始娱乐:说唱时代靠本草打开娱乐:那都能拍?这个导演不简单娱乐:收手吧!杨蜜都坏掉了开局网恋奔现,女友竟是姐姐闺蜜一胎三宝:鬼王爹地,太凶猛魔眼小神医四合院:忙着去赶山,挖宝馋死禽山河丹青卷山村极品傻医百年校庆:我被校花当众表白九阳剑圣山水情文娱:重生后,我和富婆青梅双向奔赴天眼仙医吴北
寻觅书屋搜藏榜:上班第一年,我被女总裁倒追从小村长到首富宠妻无度:腹黑摄政王重生太粘人秀才相公港综:重生港岛,我是船王接班人直播种田:我在古代给祖国寄古董娇妻出逃,骗婚总裁太难缠捡个王爷过日子女神的贴身男秘娱乐:全网求我出道绝世吸血女王离婚日记逆天败家系统我怎么穿越到了思密达妻子的秘密(微风)全民转职:我靠被动技能成法神妖妻在上:冥少心尖宠节目组失联,荒岛直播逆转人设让你唱跳,你披上紫袍雷法万岁?群穿明末之荒海平波纪未婚夫死后我嫁给了他的分身权御山河农门娇娘有空间年少有为蜜谋已久财富万亿,师姐帮我追老婆开局操作蝙蝠侠银川大陆之峰雪天下我那上了年纪的女明星女友夫人她又出来赚钱搞事业了年代文炮灰女配养崽崽美味良缘斗罗之我才是真正的气运之子上课了单身狗拐个战神当夫君都市至尊宝四合院之何雨柱轮回从51年开始嫡嫁徒儿,下山祸害你师娘去吧我真不想做主角啊学霸逆袭,超级甜!女神的贴身男秘华娱之闪耀巨星惊!暴君的团宠崽崽是天道亲闺女半夏田园霸道俏小妞猪头吃定你我的明星师妹一世契约四合院:我有人工智能绝品村医
寻觅书屋最新小说:仕途巅峰:从女书记的秘书开始重生离婚之日:我的计划震撼全球都断绝关系了还求我回家做什么重生之美女太多了,怎么办卡牌:我不是弃神都市太子爷成了天命大反派开局背靠蓝星?一拳一戟镇万族重生:从教父到美利坚话事人囚笼里的休者诡异降临:这个人类超级有钱!为妻子复仇的丈夫炒股炒成大股东?被套就举牌?那一刻,蝴蝶飞飞辅助?抱歉,我有禁字诀!男生女相,你们都给我装了定位?上四休三!员工比我还怕公司破产我梦见了高考答案神秘法术之缘穿行诸天,证就至高蜜色诱人两界穿梭之崛起维零小说诗词两手抓,漂亮女友带回家他们都叫我大佬都市神豪之纵横花都斩神:今天也在打工魔尊是我哥辣手狂花时空祭司开局神豪系统,我的资产遍布全球回档2006,我真不懂炒股啊高武:投资命格,万倍返还闹呢?让你契约亡灵,你契约将臣万界游戏:英雄联盟系统梦境入侵:我的梦境形象是少女!从F到SSS,我的器灵进阶快亿点点怎么了重返82,开局迎娶厂花初恋妙手神医:从融合AI开始超能大老板高武:以霸王之名,横压一切!我有九千亿亩黑土地我在修仙管理局的日子直播:修仙归来破界新生资源万倍返还,众女成尊我成神湛剑风云我只是想回家,怎么就成神了?灵气复苏:我开启S1修仙赛季洛阳镖局记重生高武世界,其实我是魔修