寻觅书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

智慧闪耀:群里的学霸时刻

在总统府那宽敞明亮的书房里,午后的阳光透过雕花的玻璃窗,洒在木质地板上,形成一片片斑驳的光影。林云坐在书桌前,结束了一上午忙碌的工作,他伸了个懒腰,决定在短暂的休息时间里,看看自己的粉丝群。

林云的手指在手机屏幕上轻轻滑动,点开了那个热闹非凡的粉丝群。群里消息如潮水般不断滚动,大家热烈地讨论着各种话题,从林云在国际外交舞台上的精彩表现,到他在法庭上做出的公正裁决,粉丝们对他的崇拜和喜爱溢于言表。而林云在群里的网名“云宝”,也被大家熟知,尽管身份特殊,但他很享受在这个虚拟世界里,与粉丝们轻松交流的时光。

就在林云饶有兴致地看着群里的聊天记录时,一条消息吸引了他的注意。一位名叫苏然的大学生发了一道数学题,并配上文字:“家人们,这道题我想了好久都没思路,咱们群里有学霸能帮忙解一下吗?这可是我们高等数学课程里超级难的一道题。”

林云定睛一看,题目是这样的:

已知函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:存在\\xi\\in(a,b),使得f(\\xi) + \\xi f'(\\xi)=0。

这道题对于很多人来说确实颇具难度,一时间,群里安静了下来,之前热闹的讨论氛围被这道难题带来的沉默所取代。就连群主也发了个无奈的表情,表示自己也被难住了。

林云看着题目,嘴角微微上扬,露出自信的笑容。他虽然主要精力放在外交和法律领域,但学生时代扎实的数理基础此刻派上了用场。他起身走到书桌旁,拿起一支笔和一张白纸,准备开始解题。

首先,林云在纸上写下分析思路:“这道题考查的是中值定理的应用,关键在于构造一个合适的辅助函数。”他一边思考,一边在纸上写下辅助函数的构造过程。

设F(x)=x f(x),林云开始在纸上详细地推导这个辅助函数的性质。

因为f(x)在区间[a,b]上连续,在(a,b)内可导,而x在实数域内是连续且可导的,根据两个连续且可导函数的乘积仍然连续且可导,所以F(x)在区间[a,b]上连续,在(a,b)内可导。

接着,计算F(a)和F(b)的值。

F(a)=a\\times f(a)=a\\times0 = 0,F(b)=b\\times f(b)=b\\times0 = 0,所以F(a)=F(b)。

此时,林云想起了罗尔中值定理:如果函数y = F(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点处的函数值相等,即F(a)=F(b),那么在(a,b)内至少存在一点\\xi,使得F'(\\xi)=0。

因为F(x)=x f(x),根据乘积求导法则(uv)^\\prime = u^\\prime v + uv^\\prime,对F(x)求导可得:

F^\\prime(x)=(x f(x))^\\prime = f(x) + x f^\\prime(x)。

由罗尔中值定理可知,存在\\xi\\in(a,b),使得F^\\prime(\\xi)=0,即f(\\xi) + \\xi f^\\prime(\\xi)=0。

林云完成了整个解题过程,他仔细检查了一遍,确保没有任何疏漏。随后,他拿起手机,对着写满解题过程的纸张拍了一张清晰的照片,上传到粉丝群里。

几乎是瞬间,群里炸开了锅。

“这是什么神仙解题思路!”

“哇,云宝大神太牛了吧,这么难的题都能解出来!”

“这也太厉害了,我看了答案都还得消化半天。”

苏然更是激动得连发了好几个震惊的表情:“大神,你这思路太清晰了,我之前完全没想到构造这样的辅助函数,这下彻底明白了,太感谢你了!”

林云看着群里的消息,笑着回复道:“其实只要掌握了相关的定理和方法,这类题也没有那么难啦。数学就是要多思考,多尝试不同的思路。”

有粉丝好奇地问道:“云宝,你是学数学专业的吗?这解题能力也太强了。”

林云想了想,回复道:“我不是学数学专业的哦,只是以前对数学很感兴趣,学了不少知识,没想到现在还能派上用场。”

这时,群主也冒了出来:“云宝,你这一下子就把我这个群主比下去了,看来以后群里有数学难题,都得指望你啦。”

林云连忙回复:“群主过奖啦,大家一起交流学习嘛,我也是瞎猫碰上死耗子,刚好会这道题。”

粉丝们可不信林云的谦虚之词,纷纷开始询问他解题的技巧和学习数学的方法。林云耐心地一一解答,他分享了自己在学生时代学习数学的经验:“学习数学最重要的是理解概念和定理,不要死记硬背,要多做练习题,通过练习来加深对知识的理解和掌握。遇到难题的时候,不要急于看答案,要自己多思考,尝试从不同的角度去解决问题。”

林云的分享让粉丝们受益匪浅,大家开始在群里讨论起自己学习数学的心得和困惑,群里的氛围变得异常热烈。林云也沉浸在这种浓厚的学习交流氛围中,他一边回答着粉丝们的问题,一边回忆着自己学生时代为了攻克一道道数学难题而废寝忘食的日子。

过了一会儿,又有粉丝发了一道新的数学题,这是一道关于多元函数极值的问题:

已知函数z = f(x,y)=x^3 + y^3 - 3xy,求函数z在闭区域d:x\\geq0,y\\geq0,x + y\\leq2上的最大值和最小值。

林云看着这道题,再次拿起笔,在纸上开始分析。

首先,求函数z在区域d内的驻点。

分别对x和y求偏导数:

z_x = 3x^2 - 3y,z_y = 3y^2 - 3x。

令z_x = 0,z_y = 0,得到方程组:

\\begin{cases}3x^2 - 3y = 0 \\\\ 3y^2 - 3x = 0 \\end{cases}

由3x^2 - 3y = 0可得y = x^2,将其代入3y^2 - 3x = 0中,得到:

3(x^2)^2 - 3x = 0,即3x^4 - 3x = 0,提取公因式3x得3x(x^3 - 1)=0。

解得x = 0或x = 1。

当x = 0时,y = 0;当x = 1时,y = 1。所以函数z在区域d内有两个驻点(0,0)和(1,1)。

接着,求函数z在区域d边界上的最值。

边界x = 0(0\\leq y\\leq2)上,z = f(0,y)=y^3,z^\\prime = 3y^2\\geq0,所以z在[0,2]上单调递增,z(0)=0,z(2)=8。

边界y = 0(0\\leq x\\leq2)上,z = f(x,0)=x^3,z^\\prime = 3x^2\\geq0,所以z在[0,2]上单调递增,z(0)=0,z(2)=8。

边界x + y = 2(x\\geq0,y\\geq0)上,y = 2 - x,将其代入z = f(x,y)中得:

z = f(x,2 - x)=x^3 + (2 - x)^3 - 3x(2 - x)

展开并化简:

\\begin{align*}

z&=x^3 + (8 - 12x + 6x^2 - x^3) - (6x - 3x^2)\\\\

&=x^3 + 8 - 12x + 6x^2 - x^3 - 6x + 3x^2\\\\

&=9x^2 - 18x + 8

\\end{align*}

对z = 9x^2 - 18x + 8求导得z^\\prime = 18x - 18,令z^\\prime = 0,解得x = 1,此时y = 1,z(1)=9 - 18 + 8 = -1。

最后,比较驻点和边界上的函数值:

f(0,0)=0,f(1,1)=1 + 1 - 3 = -1,f(2,0)=8,f(0,2)=8。

所以函数z在闭区域d上的最大值为8,最小值为-1。

林云完成了解题过程,再次拍照上传到群里。粉丝们看到答案后,又是一阵惊叹和夸赞。

“云宝,你简直就是数学大神啊,这解题过程太详细了!”

“跟着云宝学数学,感觉数学都变得简单了。”

“云宝,你是不是偷偷去数学系进修了,这水平绝了!”

林云看着群里的消息,笑着回复道:“大家别夸啦,我就是把自己的思路分享给大家,一起进步嘛。数学其实很有趣,只要掌握了方法,就能发现其中的乐趣。”

在接下来的时间里,林云继续和粉丝们在群里交流着数学知识和学习经验。他的耐心解答和专业分析,让粉丝们对他的崇拜又加深了几分。而林云也在这个过程中,收获了满满的快乐和成就感。他没想到,自己曾经热爱的数学,在这个粉丝群里,能成为连接他和粉丝们的桥梁,让彼此在知识的海洋里共同探索,共同成长。

寻觅书屋推荐阅读:开局10亿美元,全凭我自己努力我们的灵魂被交换了战气凌霄乡村荒唐往事精神小伙战四方,兜里没钱还要装开局觉醒,这个系统好骚啊从法盲到律神,我经历了什么!开局成了二姐夫欢乐军营趣事多,一半泪水一半汗惩治邪恶盲婚哑嫁系列之宅深如渊木叶:医疗忍者的重启人生虐完我,前妻后悔了,求我回头迷失禁岛被凶兽忽悠去穿越开局就是在逃荒电影大亨娱乐:我和女神把生活综艺变恋综人在乡村,扶墙出门山洞奇缘记一个人的旅行之路恋综:我的青梅竹马竟然是天后无疆异世之异能世界官场鬼才之从副镇长到权利巅峰偷走你满目欢喜与温柔战神为婿神秘之地灵气复苏:我能召唤铠甲极品修真强少执掌风云亡灵法师,骷髅海很正常吧!顶级外卖员刀镇星河官场孽缘流浪直播,歌中故事让全网泪崩神明复苏,我被元始天尊内定了?开局摸奖心之钢,你碰我一下试试灵气复苏:开局获得黑影兵团战地摄影师手札万般命格加持吾身,谁敢称无敌!重生何雨柱,开局清醒你惹他干嘛,他连仙界都敢踏平!超能进化,我的女神军团!诸天镜仙荒野建造之理想乡女神的战神狂婿超级奶爸,我被巨星天后绑架了夜深人静的雨声玩坏木叶从加点开始且以诗酒试风华和高冷女教师领证,全校都惊了
寻觅书屋搜藏榜:上班第一年,我被女总裁倒追从小村长到首富宠妻无度:腹黑摄政王重生太粘人秀才相公港综:重生港岛,我是船王接班人直播种田:我在古代给祖国寄古董娇妻出逃,骗婚总裁太难缠捡个王爷过日子女神的贴身男秘娱乐:全网求我出道绝世吸血女王离婚日记逆天败家系统我怎么穿越到了思密达妻子的秘密(微风)全民转职:我靠被动技能成法神妖妻在上:冥少心尖宠节目组失联,荒岛直播逆转人设让你唱跳,你披上紫袍雷法万岁?群穿明末之荒海平波纪未婚夫死后我嫁给了他的分身权御山河农门娇娘有空间年少有为蜜谋已久财富万亿,师姐帮我追老婆开局操作蝙蝠侠银川大陆之峰雪天下我那上了年纪的女明星女友夫人她又出来赚钱搞事业了年代文炮灰女配养崽崽美味良缘斗罗之我才是真正的气运之子上课了单身狗拐个战神当夫君都市至尊宝四合院之何雨柱轮回从51年开始嫡嫁徒儿,下山祸害你师娘去吧我真不想做主角啊学霸逆袭,超级甜!女神的贴身男秘华娱之闪耀巨星惊!暴君的团宠崽崽是天道亲闺女半夏田园霸道俏小妞猪头吃定你我的明星师妹一世契约四合院:我有人工智能绝品村医
寻觅书屋最新小说:都市高武战武九天阿曼的职场逆袭穷奇在我身被全家当废物后,我神医的身份曝光了别人淘金按克,你淘金按吨?异常配送:北斗与南斗的千年账单都快退圈了,爆词条系统才加载完来到城市仙尊归来,再不上学就迟到了!我能将人变成恶魔!回归豪门后,和前任姑姑闪婚了云启未来异世终焉高武:从班级吊车尾到人族武圣!都市逆袭之我是隐形首富捡个女友回家过年!灵幻觉醒之重生我,嘴强王者,三寸肉舌喷杀神明全民:霉运缠身?全世界助我升级都市生活之振兴中医红颜洪福神只:我是大角鼠?!大佬家的小废材逆袭了古董商寻船日志妻叛:我跌入谷底再攀巅峰继承荒山:直接改造10A级景区心灵骇客:意识破晓每日抽卡三次,享受人生肆意山林生活日记抗战:八百无限战魂助我!回的去的家乡判官的现代生活抗鹰援朝:云爆弹洗地,亿万增幅跗骨之灵都回到58年了,我还不能躺平农民工的一生我有胜天半子buff,你敢惹我按理说学化学还要操控元素?人的一生应该怎么活被解除婚约,我无敌你后悔什么?小镇神仙开局成园长,我的动物们都成精了穿越时空特种兵重生1992圆梦之路神级投资系统:都市逆袭传奇末世觉醒:暗影之主穿越之红星闪耀从私吞千万亿舔狗金开始当神豪你告诉我这是小时候那个软糯青梅